On condition numbers for the canonical generalized polar decompostion of real matrices

نویسندگان

  • Ze-Jia Xie
  • Wen Li
  • Xiao-Qing Jin
  • ZE-JIA XIE
  • WEN LI
  • Panayiotis Psarrakos
چکیده

Three different kinds of condition numbers: normwise, mixed and componentwise, are discussed for the canonical generalized polar decomposition (CGPD) of real matrices. The technique used herein is different from the ones in previous literatures of the polar decomposition. With some modifications of the definition of the componentwise condition number, its application scope is extended. Explicit expressions and computable upper bounds of these three condition numbers for the CGPD are presented. Besides, some first order normwise and componentwise perturbation bounds for the CGPD are also obtained. At last, some numerical examples are given to demonstrate the theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela on Condition Numbers for the Canonical Generalized Polar Decomposition of Real Matrices

Three different kinds of condition numbers: normwise, mixed and componentwise, are discussed for the canonical generalized polar decomposition (CGPD) of real matrices. The technique used herein is different from the ones in previous literatures of the polar decomposition. With some modifications of the definition of the componentwise condition number, its application scope is extended. Explicit...

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

The Canonical Generalized Polar Decomposition

The polar decomposition of a square matrix has been generalized by several authors to scalar products on Rn or Cn given by a bilinear or sesquilinear form. Previous work has focused mainly on the case of square matrices, sometimes with the assumption of a Hermitian scalar product. We introduce the canonical generalized polar decomposition A = WS, defined for general m × n matrices A, where W is...

متن کامل

Properties of matrices with numerical ranges in a sector

Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...

متن کامل

ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017